Nonlinear System Modeling Using Single Neuron Cascaded Neural Network for Real-time Applications
نویسندگان
چکیده
Neural Networks (NN) have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC) architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.
منابع مشابه
Single Neuron Cascaded Neural Network Model based Speed Estimation for Sensorless Induction Motor Drives
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides an alternative for on-line speed estimation. A structurally comp...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملPerformances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-lin...
متن کاملExploiting inherent relationships in RNN architectures
We provide the relationship between the learning rate and the slope of a nonlinear activation function of a neuron within the framework of nonlinear modular cascaded systems realised through Recurrent Neural Network (RNN) architectures. This leads to reduction in the computational complexity of learning algorithms which continuously adapt the weights of such architectures, because there is a sm...
متن کاملArtificial Neural Network Type Learning with Single Multiplicative Spiking Neuron
In this paper, learning algorithm for a single multiplicative spiking neuron (MSN) is proposed and tested for various applications where a multilayer perceptron (MLP) neural network is conventionally used. It is found that a single MSN is sufficient for the applications that require a number of neurons in different hidden layers of a conventional neural network. Several benchmark and real-life ...
متن کامل